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Convection in a Gravitational Field 
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We set up a classical stochastic model for the irreversible dynamics of a lattice 
gas under gravity. We show that for a class of initial states the system converges 
to equilibrium, which obeys the laws of thermostatics. 
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1. INTRODUCTION 

In a challenging article, Dunning-Davies  et al. Il~ have computed  the 
ent ropy of an ideal gas in a gravi ta t ional  field; they find that it can become 
negative, and note that this point  is not  clear in the literature. The difficulty 
is traced to one step in the calculation,  where a sum in a discrete 
approx ima t ion  to the cont inuum is replaced in the limit by an integral. It 
is to be expected that  a discrete model  will not give rise to negative 
entropies,  and it is the purpose  of the present work to give a consistent and 
computab le  model  of a gas in a gravi ta t ional  field. 

We use the field descript ion of the configurat ion space; thus, we name 
the points  in space, and fix the configurat ion by listing how many particles 
sit at each point. The field descr ipt ion automat ica l ly  treats the particles as 
indist inguishable,  even though classical (Ko lmogorov ian )  probabi l i ty  has 
been used. The configurat ion space associated with the union of two 
regions is the product  set of the configurat ion spaces associated with the 
two regions. As a result, en t ropy is an extensive variable,  and the theory 
does not  suffer from the Gibbs  paradox.  

Fo r  simplicity we take the system to be noninteract ing,  the gravita-  
t ional  field to be constant ,  space to have one dimension,  and space-time 
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and kinetic energy to be discrete. Thus we are looking at the statistical 
dynamics of the lattice gas. Each site is either empty or occupied by one 
particle. This expresses a hard-core repulsion, a n d  is the reason why the 
equilibrium state turns out to be the Fermi-Dirac  ensemble. To describe 
the dynamics, we use the formalism of ref. 2: if ,(-2 denotes the space of field 
configurations, then the states make up the convex set X(I2) of probability 
measures on s and one time-step in the dynamics is given by a possibly 
nonlinear map r on 2'(s There are two parts to the dynamics. The 
first part is a symmetric stochastic map T* which is affine and describes 
diffusion in the gravitational field. This map conserves energy, in that 
it permits transitions only between configurations of the same energy, 
kinetic +gravitat ional .  The diffusing particles carry some kinetic energy 
with them, and so heat is transported by convection. The action of T* thus 
conserves mean energy. It also conserves mean total number  of particles, 
and is entropy-nondecreasing. On its own, this part of the dynamics cannot  
be fully mixing, since it does not redistribute the probability between dif- 
ferent energy shells; the best it can do is to drive a state with a sharp 
energy toward the microcanonical state. In particular, we see that if the 
state of lowest energy is unique, then it cannot be involved in any energy- 
conserving transitions at all; it forms an energy shell consisting of just one 
point. Such dynamics makes up a very special subclass of the general type 
advocated by Penrose. TM In our  model there is a second part to the 
dynamics, which represents pure dissipation. This implements the idea of 
local thermodynamic equilibrium (LTE) and stems from the remark in ref. 4 
that the local dissipative forces in a liquid act many millions of times faster 
than diffusion or chemical reactions. So to all intents and purposes the 
local state at each instant must be a grand canonical state, fully described 
by a local density and beta. Thus, after a particle has diffused, its kinetic 
energy is instantly redistributed among its modes without net loss or gain 
in the mean. After redistribution, the probability that its kinetic energy is 
jhco is proport ional  to e -I~h'~ j =  O, 1, 2 ..... The instantaneous, local value 
of beta is determined by the requirement that the local mean energy and 
the local density are unchanged by the dissipation. The dissipation also 
destroys any correlations between different points. The resulting map is 
nonlinear and is denoted by Q; it is also entropy-nondecreasing. The map 
Q thus redistributes the probability among the energy shells. One step in 
the dynamics is then p ~ rp, where r = Q o T*. We should not confuse 
with mean-field dynamics, which replaces a field, such as a density, by its 
mean value, which has no fluctuations. For  the same reason, the dynamics 
is not the same as the deterministic limit. ~5"6~ The map r defines by iteration 
an orbit through the class of local grand canonical states with the same 
mean total energy and particle number as the initial state. This class is a 
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finite-dimensional compact  manifold, and because entropy is a strict 
Lyapunov function with a unique fixed point, it follows from Lyapunov 's  
direct method that for large times the system converges. It will be shown 
that the limit is a state of uniform beta and chemical potential, and so 
obeys the equilibrium condition of thermostatics. At equilibrium the 
density therefore obeys an approximately exponential law as a funcion of 
depth (but exhibits a correction at high densities caused by the hard core). 
The pressure at height x is related to log Q,. in the usual way, where Q.,. 
is the local grand partition function. 

2. T H E  K I N E M A T I C S  O F  T H E  M O D E L  

Let A = {0, l, 2 ..... N} be space, interpreted as lying in the vertical 
direction with a distance d between points. At each x e A define the local 
sample space to be 

~,+= {;ZJ, 0, 1, 2 .... } for each x ~ A  

The total sample space is then 

�9 Q = 1-~ g2.,. 
.x'• A 

A sample point is thus a function co: A --* { ~ ,  0, 1 .... }. We interpret the 
sample point ~o as follows: if, for an x, ~ ( x ) =  E3, then there is no particle 
a tx .  If co (x )= j ,  where j = 0 ,  1,2 ..... then there is one particle at x, its 
kinetic energy is .jho~, and its potential energy is dmgx. Here, g is the 
acceleration due to gravity and m is the mass of the particle. 

We are going to consider diffusion which occurs by the hopping of a 
particle from an occupied site to an unoccupied site next to it. To enable 
this to occur with the conservation of energy, we take ho~=mgd. This 
enables a particle of kinetic energy jhw at x to hop to x +  1, its kinetic 
energy being reduced to ( j - 1 ) h o J .  Similarly, a particle can fall one step 
and gain kinetic energy. If j >  1, some kinetic energy is carried with the 
particle. The model therefore describe the convection of heat. 

A state of the system is a probability measure p on .O: for each con- 
figuration co we are given p(co)/> 0 such that Z,, p(o~)= 1. The set of states 
on .t'2 is denoted s Each state p~Z(g2) defines for each x a local state 

p., ~ Z ( ~ ,  ) 

thus: f o r j ~  { ~ , 0 ,  1 .... }, put 

p x ( j ) =  ~ p(a~) (1) 
cu E ~ : c ~ ( x )  = j  
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This is the marginal distribution of p onto the factor 12.,.. We say that a 

state p is independent over A if, writing ~o = (09(0), co(l) ..... og(N)), we have 

p ( w ) =  r I  p.,Uo(x)), also written p =  @ p.,. (2) 
m ~ A X E i l  

We say that a state p.,.~X((2.,.) is a grand canonical state with inverse 
temperature/7 and chemical potential/~ if the ratio of the probability that 
the occupied site has kinetic energy .//lo) to the probability that the site is 
unoccupied is given by the usual Boltzmann factor: 

p.,.(j)lq.,. = e /Sl.#h,,, + ....... 1.~ ~,) for j = 0, 1, 2 .... (3) 

In (3) we have used the notation q.,. for p.,.(~), the probability that the site 
x is empty. Then p(x)= 1 - q , .  ~< 1 is the scaled density. The upper limit, 1, 
corresponds to the close packing of particles. We denote the grand canoni- 
cal state at x by Pt~,.,,,. 

If the state at x is Pt~,.f,,, then 

exp( -/7 ,mdgx +/7 ,. It ,. )'~ - 
q , = e - ' =  / (4) 

Whereas every state has bounded density, there are some states with 
infinite mean kinetic energy: (3--,.)=ZTkojp.,.(j)hco. Let _~ be the affine 
subspace of X(U2) consisting of states of finite mean kinetic energy at 
each x. We define the LTE map Q: ~ --+ ~ by 

Qp = @ Pt~..,. 

where ll,. and /7.,. are uniquely determined by the requirement that (Qp),. 
have the same mean density and kinetic energy as p.,.. It is known from 
equilibrium theory that (Qp).,. is the state of greatest entropy among all 
states with this property, and that the state Qp, which is independent 
over A, is the state of greatest entropy among all states with the given 
marginals. It follows that Q is entropy-nondecreasing. Recall that the 
Shannon entropy 

S ( p ) = -  ~ p(~o)logp(o)) 
fo E -(2 

is finite for any state in ~ ,  since it is not greater than 

S(pl~ , . , ) =  • S(p~,,.,,,) 
A" E / |  
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3. THE D Y N A M I C S  OF THE MODEL 

The diffusive part of z is determined by a stochastic map T on the 
(Abelian) W*-algebra J of bounded functions on ~Q. The motion of the 
states is then the dual to this, given by the map T*: X ~ Z" determined by 

( T * p , f )  = (p, Tf ) ,  .fe,~r p~X~_~'*  

where ~/* is the dual o f~ / .  We note that ,.~' is the completion of Span g2, 
the complex vector space with the elements of-Q as a natural basis. This 
is also a pre-Hilbert space, with scalar product  

2 <f,, Z 

The map T acts locally, its matrix elements in the natural basis being zero 
except between neighboring sites, and kinetic energies differing by one unit. 
T is a convex sum of terms T,.(j), which acts on Span(g2, x g2,+ ~) and is 
the identity on the remaining factors. We arrange that Tx(j) causes a hop, 
with probability 2 < 1, by a particle at x with kinetic energy ( j +  l)hr to 
x + 1 with kinetic energy jho~, provided that the site x + ! is empty. It also 
causes the inverse jump, as it is a symmetric matrix. Thus, we may present 
T,-(J) as the stochastic matrix 

09 1 ~0 2 

~o 2 2 1 - 2  
(5) 

In this matrix, the first row and column are labeled by a point eo~ .Q 
such that t n l ( x ) = j +  1, ~o~(x+ 1 ) = ~  and the second row and column 
are labeled by a point 0~2~g2 such that eo_ , (x)=~,  o 9 2 ( x + l ) = j .  For 
simplicity we have chosen 2 to be independent ofj. The sample point ~o t is 
connected to only finitely many points by such matrices. So by forming a 
convex sum of all the matrices involving co~ we get a stochastic matrix tak- 
ing care of all its possible transitions. Similarly for any other element of g2. 
Thus we get an infinite stochastic matrix, any of whose rows or columns 
has only finitely-many nonzero elements. It therefore acts on Span .Q (the 
algbraic sum) in a well-defined way. Its adjoint (equal to it) acts on 
@ _~ r(,Q) and preserves the mean total energy and total particle number. 
This follows from the fact that T connects only states with the same num- 
ber of particles and the same energy. We shall see this explicitly in a while. 
It follows that T maps ~ into 9 .  To find the fixed points of ~ = Q o T, note 
that entropy is a strict Lyapunov function for each T,.(j) and is strictly 
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convex, so a fixed point of a convex sum of these stochastic maps  is a fixed 
point of each of them (Tolman ' s  principle of detailed balance is true here). 
So a fixed point of r is a grand canonical state that is left unchanged by 
all the T,-(J)- 

Take  p e Z ' ( f 2 )  to be independent over A, and consider the action of 
Tx(j) on the relevant part  of p, namely p.,.| As 
before, put 

p.,.=(q.,.,p.,.(j)), p., .+,=(q,.+,,p,.+,(j)) 

Let p '  E Z'(I2,. • 12+,.+ ~) be the relevant part  of T , ( j )  p. Then p '  differs from 
p at only two points, as we see from Eq. (5): 

p' ( j+ 1, ~3 ~) = (1 - 2 ) p , ( j +  1) q.,.+ ~ + 2q.,. p,. + , ( j )  

p ' ( ~ , j )  = 2px(j+ 1) q.,.+, + (1 - 2) qx P.,. + , (J)  

Now 

p.',.(j + 1 ) =  p ' ( j +  1, ~ ) +  Z P'(J+ 1, / )  
/ = 0  

= p ' ( j +  1, ~Z3)+ ~ p,.(j+l)p.,.+~(l) (6) 
/ = 0  

since T , ( j )  does not alter p( j+  1, / )  = P x ( J +  l)p.,.+ ~(I). Thus 

p ' , . ( j+ 1 ) =  p ' ( j +  1, ~ ) +  p. , .( j+ !) Z p.,.+,(/) 
/ - 0  

= (1 - .~) pl,.(j-{- l ) qx+  t+2q.,.p.,.+,(j)+ p.,.(j + 1)(1 - q.,.+ ,) 

= p.,.(j + 1 ) -  2 (px( j  + l) q,. +, -- p.,.+ t(J)  q.,-) (7) 

This could have been guessed, since the change in p., .(j+ 1) can come 
about  from the absence of a particle at x (probability: q.,.) and the presence 
of one at x + l  of energy jhco [probabil i ty:  P.,-+t(J)],  or from a hole at 
x + 1 and a particle of energy ( j  + 1 ) heo at x [probabil i ty:  p.,.(j + 1 ) q,. + ~]. 
Our  calculation shows that this intuitively natural  dynamical  law comes 
from a symmetr ic  stochastic matrix followed by Q, and is therefore 
entropy-increasing. Similarly we get 

P.',- + , (J)  = P.,.+ t (J)  + 2(p.,.(j + 1 ) q,.+, - p.,.+ , ( j )  q.,.) (8) 

We remark that po(0), the ground-state  occupat ion density, does not 
appear  in either equat ion of motion,  and so is a constant  of the mot ion 
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under the Markov  chain generated by T*. It is Q that causes the time 
dependence of this variable and leads us to equilibrium. We can now verify 
explicitly that  T*( j )  conserves the mean energy of the two sites x and 
x + 1. For  this energy is 

[ ( j  + 1 ) h co + dmgx ] p.,.(j + 1) + [jhco + drag( x + 1)] p.,. +, ( j )  

= ( j + x +  1) hco[px(j+ 1)+ Px+ , ( J ) ]  

and since 

p.,.(j + 1 ) + p.,.+ , ( j )  = Pl,-(J + 1) + p~,.+ , ( j )  

this is conserved; this also shows that the mean number  of particles is 
conserved. 

We conclude that {z"p} is an orbit  in X((2) with fixed mean energy 
and particle number,  moving through local grand canonical states with 
entropy as a strict Lyapunov  function. The proof  of convergence to a fixed 
point will be complete when we show that there is a unique fixed point. 
This is done in the next section. 

4.  T H E  F I X E D  P O I N T  

To be stationary,  a state must be a fixed point of all T.,.(.j), and so 
must satisfy 

p.,.(j+l)q.,.+l=q.,.p.,.+~(j) for all x,j>~O (9) 

as well as the LTE conditions, Eq. (3): 

p.,.(j + l)/q,. = exp{ -- fl.,.[(j + 1 )hco+mdg .x ' - i t , . ]  } (10) 

p. , .+,( j ) /q , .+,=exp{-f l . , .+,[ jhco+mgd(x+l)-p. , .+,]}  (11) 

We note that these conditions do not depend on 2, or on whether 2 
depends on x or j, as long as 2 > 0. This is usual in statistical dynamics. 
Combine  (9) with (10) and (11) for a l l j  to give fl.,.=fl.,.+~ and/L,.=/~,.+ ~, 
since mgd= ho~. Thus our model of convection is fully mixing, in that it 
ensures a uniform beta and chemical potential at equilibrium. The value of 
tL is fixed by the total mean number  of particles, provided that it is not 
greater than N +  1. We note that beta is fixed by the mean energy, which 
must be nonnegative. We conclude that there is only fixed point in the set 
of local grand canonical states with a given mean energy and particle 
number.  This is enough, by Lyapunov ' s  direct method,  to establish that the 
system converges at large time. 
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It is usual to relate the grand canonical  par t i t ion function to the 
pressure; but  here the pressure P varies with height. At equi l ibr ium we can, 
however, relate this to the local grand par t i t ion  function: 

e - Pl"g: - ~')'~ 
e ( z ) = ( ~ d )  ' l o g Q ( x ) = ( ~ d ) - ' i o g  1 +  ~ - ~ /  (12) 

where z = xd. In fact, this function is the unique solut ion to 

dP( z )/dz = - mgp.,./d 

which takes the value zero when p.,. = 0. F o r  the density, we easily find 

P.,. = Po e-IImdgx/[1 - -  po(l  -- e-flmdg.,)] 

which is an exponent ia l  thinning with height for very small  Po. F o r  larger 
Po we see a correct ion to the exponent ia l  law caused by the hard core. 

5. O U T L O O K  

We have constructed a discrete model  of a hard-core  latt ice gas in a 
gravi ta t ional  field using the field picture, but  remaining within classical 
probabi l i ty  theory. The discrete-t ime flow is caused by hopping,  followed 
by local thermal izat ion,  without  any loss of energy or  particles. The 
ent ropy is a strict Lyapunov  function, as follows from the construct ion,  
and the equat ions  for the fixed points  are obta ined  from the principle of 
detailed balance. It is shown that  the fixed point  is unique, being deter- 
mined by the initial values of the mean energy and mean particle number.  
This is enough to guarantee  that  the system converges to a fixed point  for 
large times. The fixed point  is that  given by the usual laws of thermostat ics .  
The usual relat ionship between the pressure and the grand par t i t ion  func- 
tion is shown to lead to the correct  re la t ionship between pressure and 
density in a gravi ta t ional  field. 

R E F E R E N C E S  

1. P. T. Landsberg, J. Dunning-Davies, and D. Pollard, The entropy of a column of gas under 
gravity, Amer. J. Phys. 62:712-717 (1994). 

2. R. F. Streater, Statistical Dynamics, Rep. Math. Phys. 33:203-219 (1993). 
3. O. Penrose, Foundations of Statistical Mechanics (Pergamon Press, 1970). 
4. R. H. Fowler, Statistical Mechanics, 2nd ed. (Cambridge, 1936), pp. 7031"1: 
5. L. Arnold and M. Theodosopulu, Deterministic limit of the stochastic model of chemical 

reactions with diffusion, Adv. Appl. Prob. 12:367-379 (1980). 
6. D. Blount, Limit theorems for a sequence of non-linear reaction-diffusion systems, 

Stochastic Processes Appl. 45:193-207 (1993). 


